Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios (2024)

References

  1. Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).

    Article CAS Google Scholar

  2. Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    Article CAS Google Scholar

  3. Duraiappah, A. K. et al. Ecosystems and Human Well-being: Biodiversity Synthesis. (World Resources Institute, Washington, DC, 2005.

  4. Jetz, W., Wilcove, D. S. & Dobson, A. P. Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biol. 5, 1211–1219 (2007).

    Article CAS Google Scholar

  5. Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

  6. Visconti, P. et al. Projecting global biodiversity indicators under future development scenarios. Conserv. Lett. 9, 5–13 (2016).

    Article Google Scholar

  7. Rondinini, C. & Visconti, P. Scenarios of large mammal loss in Europe for the 21st century. Conserv. Biol. 29, 1028–1036 (2015).

    Article Google Scholar

  8. Betts, M. G. et al. Global forest loss disproportionately erodes biodiversity in intact landscapes. Nature 547, 441–444 (2017).

    Article CAS Google Scholar

  9. Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl Acad. Sci. USA 104, 13384–13389 (2007).

    Article CAS Google Scholar

  10. Jetz, W., Sekercioglu, C. H. & Watson, J. E. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–119 (2008).

    Article Google Scholar

  11. Amatulli, G. et al. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Scientific Data 5, 180040 (2018).

  12. Hurtt, G., Chini, L., Sahajpal, R. & Frolking, S. Harmonization of global land-use change and management for the period 850–2100. http://luh.umd.edu/ (2016).

  13. Kim, H. et al. A protocol for an intercomparison of biodiversity and ecosystem services models using harmonized land-use and climate scenarios. Geosci. Model Dev. https://doi.org/10.5194/gmd-2018-115 (2018).

  14. Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article Google Scholar

  15. O’Neill, B. C. et al. A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Clim. Change 122, 387–400 (2014).

    Article Google Scholar

  16. Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Article Google Scholar

  17. IUCN Standards and Petitions Working Group. Guidelines for Using the IUCN Red List Categories and Criteria. v6.2. Prepared by the Standards and Petitions Working Group of the IUCN SSC Biodiversity Assessments Sub-Committee. https://www.iucnredlist.org/resources/redlistguidelines (2006).

  18. Lawler, J. J. et al. Projected climate‐induced faunal change in the Western hemisphere. Ecology 90, 588–597 (2009).

    Article Google Scholar

  19. Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).

    Article Google Scholar

  20. Blaustein, A. R., Wake, D. B. & Sousa, W. P. Amphibian declines: judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv. Biol. 8, 60–71 (1994).

    Article Google Scholar

  21. Engström, K. et al. Applying Occam’s razor to global agriculture land use change. Environ. Modell. Softw. 75, 212–229 (2016).

    Article Google Scholar

  22. Steinbuks, J. & Hertel, T. W. Confronting the food–energy-environment trilemma: global land use in the long run. Environ. Resour. Econ. 63, 545–570 (2016).

    Article Google Scholar

  23. Rosa, I. M. et al. Multiscale scenarios for nature futures. Nat. Ecol. Evol. 1, 1416–1419 (2017).

    Article Google Scholar

  24. Nixon, A., Fisher, R., Stralberg, D., Bayne, E. & Farr, D. Projected responses of North American grassland songbirds to climate change and habitat availability at their northern range limits in Alberta, Canada. Avian Conserv. Ecol. 11, 1–39 (2016).

    Google Scholar

  25. Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. P. Roy. Soc. B-Biol. Sci. 285, 20180792 (2018).

    Article Google Scholar

  26. Pereira, H. M. & Daily, G. C. Modeling biodiversity dynamics in countryside landscapes. Ecology 87, 1877–1885 (2006).

    Article Google Scholar

  27. Wearn, O. R., Reuman, D. C. & Ewers, R. M. Extinction debt and windows of conservation opportunity in the Brazilian Amazon. Science 337, 228–232 (2012).

    Article CAS Google Scholar

  28. Ceballos, G. & Ehrlich, P. R. Mammal population losses and the extinction crisis. Science 296, 904–907 (2002).

    Article CAS Google Scholar

  29. Gaston, K. J. & Fuller, R. A. Commonness, population depletion and conservation biology. Trends Ecol. Evol. 23, 14–19 (2008).

    Article Google Scholar

  30. Doherty, T. S., Glen, A. S., Nimmo, D. G., Ritchie, E. G. & Dickman, C. R. Invasive predators and global biodiversity loss. Proc. Natl Acad. Sci. 113, 11261–11265 (2016).

    Article CAS Google Scholar

  31. Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. Roy. Soc. Open Sci. 3, 160498 (2016).

    Article Google Scholar

  32. Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).

    Article CAS Google Scholar

  33. IUCN. The IUCN Red List of Threatened Species https://www.iucnredlist.org/ (2015).

  34. Farr, T. G. & Kobrick, M. Shuttle radar topography mission produces a wealth of data. Eos Trans Am. Geophys. Union 81, 583–585 (2000).

    Article Google Scholar

  35. Robinson, N., Regetz, J. & Guralnick, R. P. EarthEnv-DEM90: a nearly-global, void-free, multi scale smoothed, 90m digital elevation model from fused ASTER and SRTM data. ISPRS J. Photogramm. Remote Sens. 87, 57–67 (2104).

    Article Google Scholar

  36. Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article CAS Google Scholar

  37. Tropek, R. et al. Comment on ‘high-resolution global maps of 21st-century forest cover change’. Science 344, 981 (2014).

    Article CAS Google Scholar

  38. Lawrence, D. M. et al. The land use model intercomparison project (LUMIP) contribution to CMIP6: rationale and experimental design. Geosci. Model Dev. 9, 2973–2998 (2016).

    Article Google Scholar

  39. Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100: 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Clim. Change 109, 117–161 (2011).

    Article Google Scholar

  40. Hurlbert, A. H. & White, E. P. Disparity between range map- and survey-based analyses of species richness: patterns, processes and implications. Ecol. Lett. 8, 319–327 (2005).

    Article Google Scholar

  41. Rondinini, C. et al. Global habitat suitability models of terrestrial mammals. Philos. T. Roy. Soc. B 366, 2633–2641 (2011).

    Article Google Scholar

  42. del Hoyo, J., Elliott, A., Sargatal, J. & Christie, D. A. Handbook of the birds of the world. Vol. 1–16 (Lynx Editions, Barcelona, 1992–2011).

  43. Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246–250 (2018).

    Article CAS Google Scholar

  44. Gorelick, N. et al. Google Earth engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).

    Article Google Scholar

  45. Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).

    Article Google Scholar

  46. Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).

    Article CAS Google Scholar

  47. Chazdon, R. L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science 320, 1458–1460 (2008).

    Article CAS Google Scholar

  48. Dent, D. H. & Wright, S. J. The future of tropical species in secondary forests: a quantitative review. Biol. Conserv. 142, 2833–2843 (2009).

    Article Google Scholar

  49. Barlow, J. et al. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl Acad. Sci. USA 104, 18555–18560 (2007).

    Article CAS Google Scholar

  50. Akçakaya, H. R., Butchart, S. H., Mace, G. M., Stuart, S. N. & Hilton-Taylor, C. R. A. I. G. Use and misuse of the IUCN Red List Criteria in projecting climate change impacts on biodiversity. Glob. Change Biol. 12, 2037–2043 (2006).

    Article Google Scholar

Download references

Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios (2024)
Top Articles
Latest Posts
Article information

Author: Margart Wisoky

Last Updated:

Views: 6265

Rating: 4.8 / 5 (78 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: Margart Wisoky

Birthday: 1993-05-13

Address: 2113 Abernathy Knoll, New Tamerafurt, CT 66893-2169

Phone: +25815234346805

Job: Central Developer

Hobby: Machining, Pottery, Rafting, Cosplaying, Jogging, Taekwondo, Scouting

Introduction: My name is Margart Wisoky, I am a gorgeous, shiny, successful, beautiful, adventurous, excited, pleasant person who loves writing and wants to share my knowledge and understanding with you.